
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS
Int. J. Numer. Meth. Fluids 2008; 57:1793–1804
Published online 7 January 2008 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/fld.1703

Modified propagators of parareal in time algorithm and application
to Princeton Ocean model

Yueming Liu∗,† and Jianwei Hu

School of Mathematical Sciences and LPMC, Nankai University, Tianjin, China

SUMMARY

In this paper, two modified propagators of parareal in time algorithm are presented and applied to the
Princeton Ocean model (POM). The parareal algorithm was pioneered by Lions et al. (C. R. Acad. Sci.
Paris Sér. I Math. 2001; 332:661–668) and later improved in a paper by Bal and Maday (Proceedings of
the Workshop on Domain Decomposition, Zurich, Switzerland, Lecture Notes in Computer Science and
Engineering Series, vol. 23. Springer: Berlin, 2002). Alternative formulations have also been presented,
where the parallel in time algorithm proposed by Farhat and Chandesris (Int. J. Numer. Methods Eng.
2003; 58:1397–1434) is the most important one. This algorithm enables parallel computation using a
decomposition of the interval of time integration. Solutions are obtained sequentially on the coarse time
grid and on the fine time grid in parallel. A practical problem for the Bohai Sea is calculated on the
supercomputer cluster Nankai Stars. The properties of the modified propagators are analyzed in this paper.
Copyright q 2008 John Wiley & Sons, Ltd.

Received 14 January 2007; Revised 30 October 2007; Accepted 31 October 2007

KEY WORDS: parareal; POM; Bohai Sea

1. INTRODUCTION

The parareal in time algorithm was first presented by Lions et al. [1]. It uses a coarse and a
fine grid in time. These two grids are combined in a predictor–corrector scheme [2], creating an
update for the entire time interval. The coarse grid and the update scheme are strictly sequential,
while the fine grid can be computed in parallel on each subinterval of the coarse grid. The time
discretization scheme of the Princeton Ocean model (POM) is ‘partially’ explicit [3]. The coarse
time step length of the parareal algorithm may not be large enough due to the constraint of
the Courant–Friedrichs–Lewy (CFL) condition. The speedup efficiency of the algorithm, to a large

∗Correspondence to: Yueming Liu, School of Mathematical Sciences and LPMC, Nankai University, Tianjin, China.
†E-mail: cs opohotmail.com

Contract/grant sponsor: Nature Science Foundation of China; contract/grant number: 10571094

Copyright q 2008 John Wiley & Sons, Ltd.

1794 Y. LIU AND J. HU

degree, depends on the coarse time step length. To enlarge the coarse time step length, an implicit
time scheme may be a good choice, although it would be a burden to modify the POM code. Here,
we do not wish to directly consider enlarging the time step length to obtain more speedup efficiency.
However, there are some other problems that have occurred when we apply this algorithm to the
POM. The model usually needs a long fixed time interval (sometimes several whole days) to be
computed in our application to the Bohai Sea and there are problems of adjusting the time step
length and making the best use of CPUs, especially in the case where a huge number of CPUs
are not available. Here we give an approach to deal with these problems, which arise from the
implementation of the parareal algorithm. Two modified propagators of the parareal algorithm are
given in the following sections, where the original propagator can be regarded as a special case.
The speedup efficiency of the algorithms that involve these modified propagators are comparable to
the original one. There are some interesting advantages of our modified propagators. For problems
(e.g. POM) that need a fixed, long time interval to be computed and if we do not have enough
CPUs to compute the whole interval at one time, we have to split the interval into several small
intervals to fit the number of available CPUs. The length of the small time interval depends on
the number of CPUs. This constraint can be removed, if the first modified propagator is used. The
advantages of the second modified propagator is that its stability behavior seems better than the
original one and this can be seen from the results of our numerical experiments.

2. A REVIEW OF THE PARAREAL IN TIME ALGORITHM

Let us consider the scalar linear problem of ordinary differential equations

u′ =−au, u(0)=u0, t ∈[0,T] (1)

The interval of time [0,T] is decomposed into N subintervals [T n,T n+1] of size �T and each
subinterval is decomposed again with a smaller time step �t . Let M=�T /�t . The parareal algorithm
is defined using two propagation operators.

The coarse propagator G(T n,Un) with time steps �T gives less accurate, whereas the fine
propagator F(T n,Un) with time steps �t on each subinterval gives a more accurate solver
than G(T n,Un). The algorithm starts with an initial approximation Un

0 , n=0,1, . . . ,N , at time
T 0,T 1, . . . ,T N , given, for example, by the sequential computation of Un+1

0 =G(T n,Un
0), with

Un
0 =u0, here u0 is the initial value. The iteration gives

Un+1
k+1 =G(T n,Un

k+1)+F(T n,Un
k)−G(T n,Un

k) (2)

for k=0,1,2, . . . , where F(T n,Un
k), n=0,1, . . . ,N−1, can be computed in parallel.

If the algorithm converges (F and G should satisfy some stability and approximation conditions,
see the references), the global accuracy of the iterative process after a few iterations may be
comparable to that of a fine discretization with time step �t used over the whole interval [0,T].
The order of accuracy of the algorithm is given as follows.

Proposition 2.1
Let T<∞,�T =T/N ,T n =n�T,n=0,1, . . . ,N . Let F(T n,Un

k) be the exact solution at T n+1 of
(1) with u(T n)=Un

k , and let G(T n,Un
k)= R(a�T)Un

k be a one-step method, characterized by its

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 57:1793–1804
DOI: 10.1002/fld

MODIFIED PROPAGATORS OF PARAREAL IN TIME ALGORITHM 1795

stability function R(z) [4]. The local truncation error of G is bounded by C�T q+1, with q>0 and
C a constant, then we have

max
1�n�N

|u(T n)−Un
k |� (CT)k

k! �T qk max
1�n�N

|u(Tn)−Un
0 | (3)

Proof
See Reference [5]. �

3. MODIFIED PROPAGATORS OF THE PARAREAL ALGORITHM

While the original propagator performs corrections on every coarse time step, our first modified
propagator performs corrections on every m�1 coarse time steps. The second propagator contains
the parallel fine time solver, which is defined on p�1 coarse time steps, in contrast to the original
propagator, which is only defined on one coarse time step. If m=1 or p=1 these propagators
reduce to the original one.

Propagator 1
Let G̃(T̃ n,Un

k)= R(a�T̃ /m)Un
k be a choice for the coarse solver G. The iteration is

Un+1
k+1 = G̃m(T̃ n,Un

k+1)+F(T̃ n,Un
k)−G̃m(T̃ n,Un

k) (4)

where G̃m(T̃ n, ·)= G̃ ·G̃ ·· · · ·G̃︸ ︷︷ ︸
m

(T̃ n, ·).

Proposition 3.1
Let T<∞,�T̃ =T/N ,T n =n�T̃ ,n=0,1, . . . ,N . Let F(T̃ n,Un

k) be the exact solution at T̃ n+1 of
(1) with u(T̃ n)=Un

k , and let G̃(T̃ n,Un
k)= R(a�T̃ /m)Un

k be a one-step method. the local truncation
error of Gm is bounded by C(�T̃ /m)q+1, with q>0 and C a constant, then we have

max
1�n�N

|u(T̃ n)−Un
k |� (CT)k

k!

(
�T̃

m

)qk

max
1�n�N

|u(T̃n)−Un
0 | (5)

Proof
It can be easily obtained from Proposition 2.1. Indeed, just replace the local truncation error
C�T̃ q+1 by C(�T̃ /m)q+1. �

Remark 3.2

• Actually, propagator 1 can also be regarded as a special version of the general description
of the parareal algorithm as a scheme consisting of a coarse and a fine propagator. There
is a close connection between multiple steps of one-leg methods, extrapolation methods
and multi-stage methods. There is really no significant difference between taking a one-leg
method m times or using an m-stage Runge–Kutta method for propagator 1.

• Note that the time step length �T̃ /m of explicit schemes for parabolic problems is constrained
by the CFL stability condition, but �T̃ can be chosen independent of this constraint, since
only m need to be selected such that �T̃ /m satisfies the CFL condition. This can be seen
from the results of our numerical experiments in the last section.

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 57:1793–1804
DOI: 10.1002/fld

1796 Y. LIU AND J. HU

• For problems, e.g. POM, the whole time interval may be dozens of days and [0,T] has to be
split into several small intervals to fit the number of available CPUs, if we do not have enough
CPUs to compute the whole interval at one time. In the formula of the original propagator,
the length of the small time interval depends on the number of CPUs, because it needs one
CPU for every one coarse time step. This constraint on the length of small time interval may
be removed, if the first modified propagator is involved.

• The speedup efficiency can be roughly computed from the ratio between the number of steps
of a fine sequential solver with �t and the number of total sequence steps of the parareal
algorithm [1]. From a simple computation, we can see that the speedup efficiency of the
first propagator with coarse time step �T̃ is the same as the original one with coarse time
step �T , where �T̃ /m=�T . In fact, if the total number of coarse time steps is N and the
number of CPUs is C+1 (for simplicity of our programming we need 1 master CPU and C
slave CPUs). Let S=N/C (assume S is integer), which denotes that we ‘restart’ the parareal
algorithm S times. The total number of sequence steps of the original parareal algorithm
is (C+(M+C)k)S, where the first ‘C’ in the expression denotes the number of prediction
steps, the second ‘C’ denotes the correction steps,‘M’ the number of steps of the parallel
solver on every parallel CPU, ‘k’ denotes the number of iteration steps. In contrast, the total
number of steps of the algorithm with the first propagator is (Cm+(Mm+Cm)k)(S/m)=
(C+(M+C)k)S, here assume C/m is integer and we ‘restart’ the algorithm C/m times.

The second propagator of the parareal algorithm is given as follows.

Propagator 2
The total computation time interval of each parallel solver takes p�T instead of �T . The correction
formula is modified as

Un+1
k+1 =G(T n,Un

k+1)+F p(T n−p+1,Un−p+1
k)−G(F p−1(T n−p+1,Un−p+1

k)) (6)

where F p(T n−p+1, ·)=F ·F ·· · · ·F︸ ︷︷ ︸
p

(T n−p+1, ·) and F0= I means the identity operator.

Proposition 3.3
Let T<∞,�T =T/N ,T n =n�T,n=0,1, . . . ,N . Let F(T n,Un

k) be the exact solution at T n+1 of
(1) with u(T n)=Un

k , and let G(T n,Un
k)= R(a�T)Un

k be a one-step method. The local truncation
error of G is bounded by C�T q+1, with q>0 and C a constant, then we have

max
1�n�N

|u(T n)−Un
k |� (CT)k

k! (�T)qk max
1�n�N

|u(Tn)−Un
0 | (7)

Proof
We denote by enk the error at iteration step k of this modified propagator at time T n , that is
enk =u(T n)−Un

k ,n=0,1, . . . ,N . With (6) and an induction argument on n, this error satisfies

enk+1 = R(a�T)en−1
k+1 +(ea�T −R(a�T))en−p+1

k

= (ea�T −R(a�T))�n−1
j=1R(a�T)n− j−1en−p+1

k

Let ek =(eN−p+1
k ,eN−p

k , . . . ,e2−p
k)T, if the element upper index of ek is less than zero, it is set to

zero. The above relation can be expressed in the matrix form by collecting the error components

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 57:1793–1804
DOI: 10.1002/fld

MODIFIED PROPAGATORS OF PARAREAL IN TIME ALGORITHM 1797

of the kth iteration enk . Then we have

ek+1=(ea�T −R(a�T))M(R(a�T))ek

where

M(�)=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 �1 �N−2

. . .
. . .

. . .

. . .
. . . �1

. . .
. . . 1

0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
By induction on k, we obtain

ek =(ea�T −R(a�T))kM(R(a�T))ke0

and taking norms, we have

‖ek‖∞�|(ea�T −R(a�T))|k‖M(R(a�T))‖k∞‖e0‖∞

It can be proved that when |�|�1

‖M(�)k‖∞�
(
N−1

k

)∏k
j=1(N− j)

k!
then we have

‖ek‖∞ � |ea�T −R(a�T)|k
k!

k∏
j=1

(N− j)‖e0‖∞

� Ck(�T)(q+1)k

k! Nk‖e0‖∞

� Ck(�T N)k

k! �T qk‖e0‖∞

� (CT)k

k! �T qk‖e0‖∞ �

Remark 3.4

• If p=1, the second propagator reduces to the original one:

Un+1
k+1 =G(T n,Un

k+1)+F(T n,Un
k)−G(T n,Un

k)

• The jumps F(T n,Un
k)−G(T n,Un

k) in the original propagator can be obtained in sequence
correction processes, if G(T n,Un

k) in the jumps are reused from the previously coarse

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 57:1793–1804
DOI: 10.1002/fld

1798 Y. LIU AND J. HU

computation. However, it will need much memory to store the previous results. An alternative
way of obtaining the jumps without using so much memory is that we can compute the
jumps in the parallel CPUs. That is to say, two solvers F(T n,Un

k) and G(T n,Un
k) based on

the initial values Un
k should be computed on every parallel CPU. From a speedup efficiency

point of view, there is only one more step in every parallel CPU; hence, it has little effect
on the speedup efficiency. The jumps F p(T n−p+1,Un−p+1

k)−G(F p−1(T n−p+1,Un−p+1
k))

in our second propagator should be obtained in this parallel way. F p(T n−p+1,Un−p+1
k) are

obtained based on the initial value Un−p+1
k and G(F p−1(T n−p+1,Un−p+1

k)) are obtained

based on the initial value F p−1(T n−p+1,Un−p+1
k), which are just given from the last step

of computation of F p(T n−p+1,Un−p+1
k).

• The second propagator may be more stable than the others, because the jumps are obtained
from p time steps before and this may give more accurate result of jumps. This can be seen
in our following numerical results.

4. PRINCETON OCEAN MODEL

The POM was created by Alan F. Blumberg and George L. Mellor in 1977. They give a
detailed description of the numerical circulation model in [3]. A more complete list of the
references is available on the POM home page http://www.aos.princeton.edu/WWWPUBLIC/
htdocs.pom. POM is a three-dimensional, primitive equation, time-dependent, sigma coordinate,
free surface, estuarine and coastal ocean circulation model. The prognostic variables are the three
components of the velocity fields, temperature, salinity and two quantities that characterize the
turbulence, the turbulence kinetic energy and the turbulence macroscale. A horizontally and verti-
cally staggered lattice of grid points is used for the computations.

4.1. Basic equations

Consider a system of orthogonal Cartesian coordinates with x, y, z increasing eastward, northward
and vertically upwards, respectively. z=�(x, y, z) is the surface elevation and z=−H(x, y) is the
bottom topography.
The continuity equation is

∇V+ �W
�z

=0 (8)

The Reynolds momentum equations are

�U
�t

+V ·∇U+W
�U
�z

− f V =− 1

�0

�P
�x

+ �
�z

(
KM

�U
�z

)
+Fx (9)

�V
�t

+V ·∇V +W
�V
�z

− f U =− 1

�0

�P
�y

+ �
�z

(
KM

�V
�z

)
+Fy (10)

�g=−�P
�z

(11)

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 57:1793–1804
DOI: 10.1002/fld

MODIFIED PROPAGATORS OF PARAREAL IN TIME ALGORITHM 1799

The pressure at depth z is

P(x, y, z, t)= Patm+g�0�+g
∫ 0

z
�(x, y, z′, t)dz′ (12)

The conservation equations for temperature and salinity are

��

�t
+V ·∇�+W

��

�z
= �

�z

(
KH

��

�z

)
+F� (13)

�S
�t

+V ·∇S+W
�S
�z

= �
�z

(
KH

�S
�z

)
+FS (14)

The second-order turbulence closure schemes are

�q2

�t
+V ·∇q2+W

�q2

�z
= �

�z

(
Kq

�q2

�z

)
+2KM

[(
�U
�z

)2

+
(

�V
�z

)2
]

+ 2g

�0
KH

��

�z
− 2q3

B1l
+Fq (15)

�q2l
�t

+V ·∇(q2l)+W
�q2l
�z

= �
�z

(
Kq

�q2l
�z

)
+l E1KM

[(
�U
�z

)2(�V
�z

)2
]

+ l E1g

�0
KH

��

�z
− q3

B1
W̃ +Fl (16)

where V is the horizontal velocity vector with components (U,V), ∇ is the horizontal gradient
operator, W is the vertical velocity, �0 the reference density, � the in situ density, g the gravitational
acceleration, P the pressure, KM the vertical eddy diffusivity of turbulent momentum mixing, � is
the potential temperature (or in situ temperature for shallow water applications).

Because the ordinary x, y, z coordinate system has certain disadvantages in the vicinity of large
bathymetric irregularities, the sigma coordinate system equations are introduced in the POM to
transform both the surface and the bottom into coordinate surfaces. A mode splitting technique is
used in the POM. The equations governing the dynamics of coastal circulation contain propagation
of fast moving external gravity waves and slow moving internal gravity waves. It is desirable
in terms of computer economy to separate out the vertical integrated computations (external
mode) from the vertical structure equations (internal mode). That is to say, the velocity external
mode equations are obtained by integrating the internal mode equations over the depth, thereby
eliminating all vertical structures. For a detailed description about the surface and boundary
conditions, we refer to [3]. The discretization scheme of POM is a finite difference formulation.
The special grid of POM is a staggered computational ‘C’ grid. The vertical diffusion terms are
treated implicitly, while the other terms are treated explicitly, see Section 5 of [3].

4.2. Parareal algorithm applied to POM

The parareal algorithm with different propagators can be easily applied to POM. However, the
time discretization scheme for POM is partially explicit [3]; hence, the constraint of the CFL

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 57:1793–1804
DOI: 10.1002/fld

1800 Y. LIU AND J. HU

computational stability condition must be considered. The CFL condition on the vertically inte-
grated, external mode, transport equations limits the time step according to

�̃t� 1

Ct

(
1

�x2
+ 1

�y2

)1/2

(17)

where Ct =2(gH)1/2+Umax, Umax is the maximum average velocity expected. The internal mode
has a much less stringent time step:

�T̃� 1

CT

(
1

�x2
+ 1

�y2

)1/2

(18)

where CT =2C+Umax, C is the maximum internal gravity wave speed, commonly of order 2m/s
and Umax the maximum advective speed. For typical coastal ocean conditions the ratio of the
time steps, �T̃ /�̃t , is often a factor of 80–100 and for more details we refer to [3].
4.3. Program design

The fortran77 parareal code is derived from the serial code POM98. The flow diagram of our
program can be represented as follows:

The program steps of the original parareal algorithm are as follows.
Step 1: Master solves Un+1

0 =G(T n,Un
0), n=0,1, . . . ,N−1, sequentially, then we obtain the

results: U 1
0 ,U 2

0 , . . . ,UN
0 and then set k=1.

Step 2: Master sends U 0
0 ,U 1

0 , . . . ,UN−1
0 to Slave1,Slave2, . . . ,SlaveN , respectively.

Step 3 (parallel): Slave1,Slave2, . . . ,SlaveN solve unk =F(T n,Un
k), n=0,1, . . . ,N−1 in

parallel, respectively, and we obtain the results: u0k,u
1
k, . . . ,u

N−1
k .

Step 4: Master collects u0k(T),u1k(T
2), . . . ,uN−1

k (T N) from Slave1,Slave2, . . . ,SlaveN .
Step 5: Master solves the propagation problem sequentially:

Un+1
k+1 = G(T n,Un

k+1)+F(T n,Un
k)−G(T n,Un

k)

= G(T n,Un
k+1)+unk (T

n+1)−G(T n,Un
k)

we obtain the corrected results: U 1
k+1,U

2
k+1, . . . ,U

N
k+1.

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 57:1793–1804
DOI: 10.1002/fld

MODIFIED PROPAGATORS OF PARAREAL IN TIME ALGORITHM 1801

Step 6: Master checks whether the results achieve the expected accuracy, if yes, stop iteration,
otherwise set k=k+1 and go to Step 2.

The program steps of the algorithm with the first propagator are similar to the above steps
and we just give the program steps of the algorithm with the second propagator, which can be
expressed as follows:

Step 1: Master solvesUn+1
0 =G(T n,Un

0), n=0,1, . . . ,N− p−1, sequentially, then we obtain the

results: U 1
0 ,U 2

0 , . . . ,UN−p
0 and then set k=1.

Step 2: Master sends U 0
0 ,U 1

0 , . . . ,UN−p−1
0 to Slave1,Slave2, . . . ,SlaveN− p, respectively.

Step 3 (parallel): Slave1,Slave2, . . . ,SlaveN− p solve un−p+1
k =F p(T n−p+1,Un−p+1

k),

n= p−1, p, . . . ,N−1 and Ũ n+1
k =G(F p−1(T n−p+1,Un−p+1

k)) in parallel, respectively, and we

obtain the jumps: Sn+1
k =un−p+1

k (T n)−Ũ n+1
k ,n= p−1, p, . . . ,N−1.

Step 4: Master collects the jumps S p
k , S1+p

k , . . . , SN−1
k from Slave1,Slave2, . . . ,SlaveN− p.

Step 5: Master solves the propagation problem sequentially:

Un+1
k+1 = G(T n,Un

k+1)+F p(T n−p+1,Un−p+1
k)−G(F p−1(T n−p+1,Un−p+1

k))

= G(T n,Un
k+1)+Sn+1

k

we obtain the corrected results: U 1
k+1,U

2
k+1, . . . ,U

N−p
k+1 .

Step 6: Master checks whether the results achieve the expected accuracy, if yes, stop iteration,
otherwise set k=k+1 and go to Step 2.

5. NUMERICAL RESULTS

A practical problem for the Bohai Sea is calculated using the Nankai Stars, a supercomputer
cluster, developed by the Institute of Scientific Computation, Nankai University. The experiment has
been done on the grid size 98×55×7 and with program parameters Mode=4 (three-dimensional
calculation with temperature and salinity held fixed) (Figure 1).

5.1. Stability and speedup results

First, we present the numerical results of our first propagator (denoted by P1 and the original
algorithm by P0). Suppose we have only 201 CPUs available and the time interval that needs
to be computed is T =4 days. Thus, the computation cannot be completed at one time with 201
CPUs. We need to split the whole time interval T into several small time intervals. The results
are given in the following table. D=1 day in the cells of the table. The word ‘Fail’ in the column
‘CFL’ means that the CFL condition cannot be satisfied in our computation, while ‘OK’ means
that we can obtain the final results. The number in column ‘Restart times’ equals the number of
the small time intervals. That is to say, it needs a ‘restart’ of the parareal algorithm on each small
interval. ‘Ref. speedup’ is the speedup without considering communication cost, which could be
approximated by the ratio between the number of steps of the fine sequential solver with �t over
the whole time interval and the number of total sequence steps of the parareal algorithm. We take
the iteration times k=2 in all of our computations.

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 57:1793–1804
DOI: 10.1002/fld

1802 Y. LIU AND J. HU

Figure 1. Bohai Sea topography and grid (longitude: 116–122.5◦, latitude: 36.5–41◦).

�T �T̃ �t CFL Restart times CPU Speedup Ref. speedup

P0 D
100 — D

2400 Fail 2 201 — 9.7
D
200 — D

2400 OK 4 201 5.2 5.7

P1 D
100

D
50

D
2400 Fail 1 201 — 9.7

D
200

D
100

D
2400 OK 2 201 5.4 5.7

D
200

D
50

D
2400 OK 1 201 5.5 5.7

We can see from the results that the CFL constraint condition directly relates to �T , while
�T̃ =m�T seems independent of the CFL condition, which can be enlarged by increasing the
value of m. �T̃ can be regarded as the step length of ‘propagation’; hence, P1 may have some
flexibility in practical application.

The speedup efficiency in our configuration may be a little low. A speedup of 5.5 on 201
processors is only an efficiency of less than 3%. However, if we take a much smaller time step
length of the fine solver, e.g. �t=D/24000, the speedup of P0 or P1 with �T =D/200 would
be about 37, that is an efficiency near 18%. The underlying reason is the selection of the ratio
between �T and �t (see [1]). In our application, the selection of the ratio is enough.

Another interesting thing can be seen from the results that P0 and P1 have the same ‘Ref.
speedup’, while having different values in the column ‘Speedup’. The reason is that P1 only needs
communication at points of time step length of ‘propagation’.

Next, we consider the second propagator of the algorithm(P2). We performed two groups of
computation. The first group is based on a zero initial velocity field and the second group is based

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 57:1793–1804
DOI: 10.1002/fld

MODIFIED PROPAGATORS OF PARAREAL IN TIME ALGORITHM 1803

on a ‘good’ initial velocity field, indeed, it is a serial result of finer time step with T =3 days. The
whole time interval that needs to be computed is T =1 day.

The results of zero initial velocity field and ‘good’ initial velocity field are presented as follows:

P0 P2

�T �t CFL CPU p CFL CPU

T
100

T
2400 Fail 101 2 Fail 100

4 Fail 98
T
150

T
2400 Fail 151 2 Fail 150

4 Fail 148
T
200

T
2400 OK 201 2 OK 200

4 OK 198

P0 P2

�T �t CFL CPU p CFL CPU

T
100

T
2400 Fail 101 2 Fail 100

4 Fail 98
T
150

T
2400 Fail 151 2 OK 150

4 OK 148
T
200

T
2400 OK 201 2 OK 200

4 OK 198

When �T =T/150 and a good initial velocity field is provided, P2 does not violate the CFL
constraint condition as indicated by the above results (�T =T/150 satisfies the CFL condi-
tion for a serial computation of the given problem). This indicates that the behavior of the
second propagator may be more stable than the original one, at least in the configuration of our
calculation.

The speedup results of P2 with p=2 based on the ‘good’ initial velocity field are given as
follows:

�T �t CFL Relative error (%) CPU Speedup Ref. speedup

P0 T
200

T
2400 OK 5.62 201 5.2 5.7

T
150

T
2400 Fail — 151 — 7.2

P2 T
200

T
2400 OK 5.62 200 4.9 5.4

T
150

T
2400 OK 7.10 150 6.1 6.6

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 57:1793–1804
DOI: 10.1002/fld

1804 Y. LIU AND J. HU

The speedup of P2 is lower than P0, because the parallel time interval of P2 is larger than
P0. Note that again, the low speedup efficiency because of the selection of the ratio between �T
and �t .

6. CONCLUSION

The essential speedup efficiencies are comparable for all of the three propagators. Our modified
propagators P1 and P2 may have some flexibility in the configuration in the time step ratio between
the coarse and the fine time step and P2 may behave in a more stable manner in some applications.

REFERENCES

1. Lions J-L, Maday Y, Turinici G. Résolution d’EDP par un schéma en temps pararél. Comptes Rendus de l’
Acadamié des Sciences Paris, Série I, Mathématique 2001; 332:661–668.

2. Maday Y, Turinici G. The parareal in time iterative solver: a further direction to parallel implementation. In
Proceedings of the 15th International Domain Decomposition Conference, Kornhuber R, Hoppe PHW, Périaux J,
Pironneau O, Widlund OB, Xu J (eds). Lecture Notes in Computational Science and Engineering. Springer: Berlin,
2003; 731–733.

3. Blumberg AF, Mellor GL. A description of a three-dimensional coastal ocean circulation model. In Three-
dimensional Coastal Ocean Models, Heaps N (ed.), vol. 4. American Geophysical Union: Washington, DC,
1987; 208.

4. Staff G, Rønquist E. Stability of the parareal algorithm. In Proceedings of the 15th International Conference on
Domain Decomposition Methods. Springer: Berlin, 2003.

5. Gander MJ, Vandewalle S. Analysis of the parareal time-paralleled time-integration method. Report TW443,
Department of Computer Science, K.U. Leuven, Leuven, Belgium, November 2005. Available at: URL=http://www.
cs.kuleuven.ac.be/publicaties/rapporten/tw/TW443.abs.html.

6. Bal G, Maday Y. A ‘parareal’ time discretization for non-linear PDE’s with application to the pricing of an
American put. In Proceedings of the Workshop on Domain Decomposition, Zurich, Switzerland, Pavarino LF,
Toselli A (eds). Lecture Notes in Computer Science and Engineering Series, vol. 23. Springer: Berlin, 2002.

7. User’s Guide for A Three-dimensional, Primitive Equation, Numerical Ocean Model. Available at: http://www.aos.
princeton.edu/ WWWPUBLIC/htdocs.pom.

8. Farhat C, Chandesris M. Time-decomposed parallel time-integrators: theory and feasibility studies for fluid,
structure, and fluid–structure applications. International Journal for Numerical Methods in Engineering 2003;
58:1397–1434.

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 57:1793–1804
DOI: 10.1002/fld

